Three-dimensional (3D) heterotypic microtissues

3D heterotypic microtissues composed of tumor cells, fibroblasts and immune cells provide additional information on the effects of immunotherapies compared to classical 2D systems.

3D models are a versatile platform, suitable for testing engineered immunoagents like antibodies with enhanced effector function, immunocytokines, T cell binders and immune checkpoint modulators in monotherapy and in combination as well as cytotoxic compounds. They enable long-term co-culture with immune cells and characterization of immune cell subpopulations opening up new ways to assess the enhancement of NK cell, T-cell and NKT cell recruitment and activity (cytokine/chemokine release, infiltration, surface and intracellular marker expression, elimination of target cells and proliferation).


Advantages over 2D systems

Antibody penetration, immune cell infiltration, antibody targeting and subsequent lymphocyte recruitment and elimination of tumor- or fibroblast- microtissue areas represent additional aspects of the activity of cancer immunotherapy agents that cannot be assessed in a 2D system. Additionally, effects of combination therapies can be better evaluated in 3D systems, since such models better support a physiological immunomodulatory function than 2D systems.

Advantages over in-vivo models

There is a considerable temporal advantage over the in-vivo models because 3D models allow a faster kinetic analysis of therapeutic activity due to fast and efficient immune cell activation and target cell lysis.

Submit a Question or Request

Simply fill out the form below and a member of our team will follow up with you shortly.


I accord my agreement for the usage and processing of my personal data for the purpose of processing my inquiry (see Privacy Policy). I am aware that I have the right to object the processing of my data at any time and with effect for the future.